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ABSTRACT

Detection of Gravitational Wave (GW) Memory effect is one of the impor-
tant future goals among GW researchers. Scientists are looking for various
persistent memory observables that are produced by a GW burst. Here I
have mostly discussed displacement memory and velocity memory in lin-
earised gravity and in exact radiative spacetimes of General Relativity. The
characteristics of memory in the presence of different types of GW burst pro-
files have been shown in some detail through the work done in this project.
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Chapter 1

Introduction

1.1 The gravitational wave memory effect

Gravitational Wave (GW) Memory is a physical phenomenon in four dimen-
sional space-time which can show up in observations related to a GW event.
The effect persists even after the wave passes by leaving a permanent imprint
on the detector. Because of its persistence and its direct relation with GW
bursts, it is named as Gravitational Wave Memory. When the GW burst
passes by and influences the positions of say, two test masses, the separation
and relative velocity of the test masses change with time leading to persistent
displacement memory and persistent relative velocity memory, respectively.
This displacement memory can be found by solving for geodesics (and finding
the change in separation) or by analysing the geodesic deviation equation.
The relative velocity memory is nothing but the derivative of displacement
memory w.r.t time. A brief description of several persistent memory observ-
ables has been given in Appendix: A [6]. We also study the effect of GW on
a ring of particles and notice the permanent change in the shape of the ring
caused by a GW burst.

1.2 Status of observations

Several efforts are going on to detect the memory effect but since it is very
small in magnitude, scientists have to go a long way to reach the required
sensitivity. In Figure 1, we show an expected signal from a GW detector (say
LIGO-VIRGO) when memory effect is taken into consideration and caused
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by the appearance of a GW pulse sandwiched between otherwise flat space-
time regions. If there would have been no memory the signal would have

Figure 1.1: Memory effect on the strain data of the GW detector, Courtesy:
M. Favata

oscillated around zero but due to memory the positions of the test masses
change even after the departure of the pulse. A permanent shift in the GW
signal is observed which slowly builds up during the inspiral, grows rapidly
during the merger and saturates to its final shifted value during ringdown.
Possibility of detection of GW memory with the Advanced LIGO-VIRGO
detectors has been discussed in [4].

1.3 Brief overview of work done

In the next section 2.1 I have calculated (following the original work of Bra-
ginsky and Grishchuk), geodesic deviation in linearised gravity (weak field
solution of Einstein equation). This geodesic deviation equation is solved nu-
merically to obtain displacement memory and velocity memory for different
types of GW pulses i.e. Gaussian and double barrier pulse. Thereafter, sim-
ilar analyses have been done in the exact plane gravitational wave solution
of the Einstein equation written using Brinkmann coordinates. Here (i.e.
for the exact plane wave), I have solved the geodesic equations directly and
obtained memory features.

In Chapter 3, I have shown the analytical solution of the geodesic equation
in the exact plane wave spacetime, for a triangular pulse, in both the plus
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and cross polarised line elements. Some plots of displacement memory have
been shown for different values of parameters and the permenant change in
shape of a ring of particles has been analysed at different future times for a
triangular pulse (in different polarisations).

In Appendix: A [6] we have briefly discussed various persistent memory
observables with their integral representations which helps us to write the
displacement memory in terms of transverse Jacobi propagators. Appendix
B shows the details of the calculations involving a triangular pulse.
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Chapter 2

Displacement memory in
linearised gravity

2.1 The Braginsky and Grishchuk formalism

The plane wave linearised solution of vacuum Einstein equation in transverse-
traceless gauge gives the mathematical description of gravitational wave. A
gravitational wave propagating along z direction satisfies the metric

ds2 = −dt2 + (1 + a(u))dx2 + (1− a(u))dy2 + 2b(u)dxdy + dz2 (2.1)

where u = t− z is retarded time.
The Riemann tensor for the above metric tells us the conditions for the

space-time being curved. The only non-zero components of the Riemann
tensors that are going to be used for finding geodesic equation are

Rxtxt = −1

2
ä (2.2a)

Rytyt =
1

2
ä (2.2b)

Rxtyt = Rytxt = −1

2
b̈ (2.2c)

Now using Geodesic deviation equation,

d2χα

dτ 2
= −Rα

tβtχ
β (2.3)
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one can find the geodesic deviation of a particle placed at (x,y,z) from origin
which is indeed geodesic of the particle in that frame of reference.

Since, d2u
dτ2

= 0, u is also a affine parameter like proper time τ and we can use
u and τ interchangeably whenever needed.

u(τ) = u(τ0) + χ(τ − τ0)

where χ is any arbitrary constant.

Now, using (2.3) we get the following differential equations that are satisfied
by the geodesics

ẍ = −1

2
(äx+ b̈y) (2.4a)

ÿ = −1

2
(b̈x− äy) (2.4b)

z̈ = 0 (2.4c)

We can solve these above differential equations near some values of t = t0
at which the position and velocity of the mass is known. Suppose, a mass
is placed at (l1, l2, l3) without any initial velocity at time t=0. Then above
equations (2.4) become

ẍ(t) = −1

2
(äl1 + b̈l2)

ẋ(t) = −1

2
[ȧ(t)− ȧ(0)]l1 − 1

2
[ḃ(t)− ḃ(0)]l2 + ẋ(0)

x(t) = x(0)− 1

2
[a(t)− a(0)]l1 − 1

2
[b(t)− b(0)]l2 +

1

2
[ȧ(0)l1 + ḃ(0)l2 + ẋ(0)]t

x(t) = l1 − 1

2
[a(t)− a(0)]l1 − 1

2
[b(t)− b(0)]l2 +

1

2
[ȧ(0)l1 + ḃ(0)l2]t (2.5)

ÿ(t) = −1

2
(b̈l1 − äl2)

ẏ(t) = −1

2
[ḃ(t)− ḃ(0)]l1 +

1

2
[ȧ(t)− ȧ(0)]l2 + ẏ(0)

y(t) = y(0)− 1

2
[b(t)− b(0)]l1 +

1

2
[a(t)− a(0)]l2 +

1

2
[ḃ(0)l1 − ȧ(0)l2 + ẏ(0)]t

12



y(t) = l2 − 1

2
[b(t)− b(0)]l1 +

1

2
[a(t)− a(0)]l2 +

1

2
[ḃ(0)l1 − ȧ(0)l2]t (2.6)

z̈(t) = 0

ż(t) = ż(0)

z(t) = z(0) + ż(0)t

z(t) = l3 (2.7)

2.2 Examples

Now here we will solve the above mentioned geodesic deviation equations
(2.4) numerically and will show memory effects[1] between two test masses
in presence of a perturbative metric due to a GW burst. We will consider
the metric to be plus polarised and using different forms of the function a(t)
we will find the displacement and velocity memory.

Gaussian Pulse:

Let’s take a Gaussian Pulse of unit amplitude centered at t = 5

a(t) = e−(t−5)2

and two test masses were placed at (1,1) and (5,5) on x-y plane at t=-50.

-5 5 10 15

0.2

0.4

0.6

0.8

1.0

Figure 2.1: Gaussian pulse
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The geodesics of the two masses are as follows
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Figure 2.2: Position of the test masses at different times

and corresponding distance between two masses i.e. displacement mem-
ory changes accordingly
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Figure 2.3: Displacement Memory at different times
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The velocity of the test masses at different times are shown below and
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Figure 2.4: Velocity of the test masses at different times

the corresponding velocity memory of the two test masses are as follows
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Figure 2.5: Velocity Memory at different times
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Double Barrier Pulse

Now we will take double barrier pulse at t=5 as our metric perturbation

a(t) = e
−a(t−5)2− b

(t−5)2

and two test masses were placed at (1,1) and (5,5) on x-y plane at t=-50.

Figure 2.6: Double Barrier pulse

The geodesics of the two masses are as follows
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Figure 2.7: Position of the test masses at different times
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and corresponding distance between two masses i.e. displacement mem-
ory changes accordingly The velocity of the test masses at different times are
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4
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Displacement Memory δx=x2-x1
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Figure 2.8: Displacement Memory at different times

shown below and the corresponding velocity memory of the two test masses
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Figure 2.9: Velocity of the test masses at different times

are as follows
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Figure 2.10: Velocity Memory at different times

2.3 Summary of results

For all the above two cases if we notice at the geodesic or displacement
memory plots of x and y position of a test mass, the change in x and y
coordinate near the GW pulse is opposite in nature which is consistent with
the known fact about plus polarisation. From fig 2.3 and 2.8 one can observe
the curves cross the horizontal axis which implies two separated test masses
collide and after this their relative distance changes it’s sign. Since one of
it’s displacement memory is always inclined towards positive vertical axis it’s
final velocity after gw passes along x and y direction have opposite signs.
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Chapter 3

Memory in exact radiative
spacetimes

3.1 The plane fronted exact gravitational wave

In previous section we talked about memory effect in a metric which is
linearised approximate solution of source free Einstein equation. Now we
will talk about exact nonlinear plane wave solution of Einstein equation[3].
These space-time metrics can be written in terms of Brinkmann coordinates
(u, v, x1, x2)

ds2 = −2dudv + Aij(u)x
ixjdu2 + dxidxjδij (3.1)

where u and v are retarded time (or phase of the gravitational wave) and
advanced time respectively and Aij denotes the GW pulse profile. To satisfy
vacuum Einstein equation Aij needs to be symmetric traceless. Here tran-
verse components of the GW are expressed by xi where i ranges from 1 to
2.

Now in order to find a killing vector of our interest, we will be looking
for a covariantly constant null vector la

∇bl
a = 0 (3.2)

This vector la in Brinkmann coordinates can be expressed as

la = −(∂v)
a = (0,−1, 0, 0)

Since la satisfies
∇alb +∇bla = 0

la is a killing vector.
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3.2 Displacement memory from geodesics

Suppose a test mass follows a geodesic γ which is affinely parametrized by
proper time τ . So, using the property of a killing vector we can define a
arbitrary parameter χ which follows

γ̇ · l = γ̇ala = u̇ = χ (3.3)

where dot ( ˙ ) above some vector represents differentiation w.r.t τ . Now we
will define a Lagrangian function from (3.1) to get the geodesics

L = −2u̇v̇ + Aij(u)x
ixju̇2 + ẋiẋjδij (3.4)

Before proceeding further let’s denote the coordinates of γ are (u(τ), v(τ), xi(τ))
at some time τ . We can also obtain the above geodesic equation (3.3) in the
following manner using the Lagrangian

d

dτ

(
∂L
∂v̇

)
=

∂L
∂v

−2
d

dτ
(u̇) = 0

u̇ = χ

u(τ ′) = u(τ) + χ(τ ′ − τ) (3.5)

Similarly,

d

dτ

(
∂L
∂u̇

)
=

∂L
∂u

−2v̈ +
d

dτ

(
2Aijx

ixju̇
)

=
∂Aij

∂u
xixju̇2

Now if we consider χ = 0, the above equation gives

v̈ = 0 (3.6)

So, we can say both u and v are affine parameter when χ = 0. Otherwise,
only u is the affine parameter for any values of χ. For xi’s we get

d

dτ

(
∂L
∂ẋk

)
=

∂L
∂xk

2δikẍ
i = (Aik + Aki)x

iu̇2

δkjδikẍ
i = δkjAkix

iu̇2

ẍj = Aj
ix

iu̇2
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ẍi(τ) = χ2Ai
j(u)x

j(τ) (3.7)

3.3 Displacement memory from geodesic de-

viation

In Brinkmann metric only non-zero value (i.e. other non-zero terms can
be obtained using symmetry/anti-symmetry relation) of Riemann curvature
tensor is

Ri
0j0 = −Ai

j(u) (3.8)

Now, using the geodesic deviation relation we get

d2ηi

dτ 2
= −Ri

αjβγ̇
αηj γ̇β

= −Ri
0j0γ̇

0ηj γ̇0

= Ai
j(u)η

ju̇2

d2ηi

dτ 2
= χ2Ai

j(u)η
j (3.9)

where η is the deviation vector. Now, if we consider the deviation of geodesic
γ(τ) from origin it reduces to (3.7).

3.4 Examples

Now in this section we will solve geodesic equation (3.7) numerically to
show the displacement and velocity memory between two test masses ini-
tially placed at (1, 1) and (5, 5) at time t = −50 in x1 − x2 plane for χ = 1
and different forms of Aij. For simplicity we will be considering plus po-
larised terms of Aij only. Here for ease we will represent x

1 and x2 by x and
y respectively.

Gaussian Pulse

Here we have chosen the GW pulse profile to be Gaussian in nature around
u = 5

Aij(u) =

(
e−(u−5)2 0

0 −e−(u−5)2 )

)
21



For this Aij the geodesics of the two test masses are shown above 3.1 and
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Figure 3.1: Position of the test masses at different times

the corresponding displacement memory is as follows
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Figure 3.2: Displacement memory between the test masses at different times
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Similarly we obtain the velocity of the test masses at different times and
its velocity memory shown in figure 3.3 and 3.4 respectively.
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Figure 3.3: Velocity of the test masses at different times
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Figure 3.4: Velocity memory between the test masses at different times
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Double Barrier Pulse

Now we will be using GW pulse of the form that looks like a double barrier
used in previous chapter Figure2.6

Aij(u) =

(
e
−a(u−5)2− b

(u−5)2 0

0 −e
−a(u−5)2− b

(u−5)2
)

)

Solving the geodesic equation (3.7) numerically we obtain the geodesics of
the two test masses and its displacement memory shown in figure 3.5 and 3.6
respectively.
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Figure 3.5: Position of the test masses at different times

24



a=b=1

a=b=0.5

-40 -20 20 40
τ

50

100

150

200

250

300

δx

a=b=1

a=b=0.5

-40 -20 20 40
τ

-60

-50

-40

-30

-20

-10

10
δy

Figure 3.6: Displacement memory between the test masses at different times

As done earlier we obtain the velocity of the test masses at different times
and its velocity memory shown in figure 3.7 and 3.8 respectively.
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Figure 3.7: Velocity of the test masses at different times
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Figure 3.8: Velocity memory between the test masses at different times

3.5 Summary of results

Here also for change in x and y position of the test masses are opposite in
nature for gaussian and double barrier pulse. From the displacement memory
curve of gaussian or double barrier pulse one can say if x position increases
then y position of the mass will montonically decrease with time. In the
velocity memory plots of gaussian pulse the velocity becomes constant in
single step but for double barrier pulse the velocity changes in two steps i.e.
each step for each of the barrier.
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Chapter 4

Triangular Pulse in exact
radiative spacetime

Here we will analyze the effect of triangular pulse in exact radiative space-
time. We will consider a triangular pulse shown in Figure4.1 which start
growing linearly at u = −a

2
with slope β and then start decreasing linearly

at u = 0 with slope −β until the pulse reaches zero at u = a
2
. Before u = −a

2

and after u = a
2
the profile of the pulse is flat having zero value. Based on the

Figure 4.1: Triangular Pulse

piecewise functional expressions of the triangular pulse we divide the pulse
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into four regions. The region which contain all values of u ≤ −a
2
belong

to Region 1, Region 2 contain u ∈ (−a
2
, 0], Region 3 contain u ∈ (0, a

2
] and

u > a
2
belong to Region 4.

A(u) =


0 u ≤ −a

2
(Region 1)

β(u+ a
2
) −a

2
< u ≤ 0 (Region 2)

−β(u− a
2
) 0 < u ≤ a

2
(Region 3)

0 u > a
2

(Region 4)

(4.1)

Since u is a affine parameter, we assume u = τ and the geodesic equation
Eq.(3.7) takes the form

d2xi

du2
= Ai

j(u)x
j(u) (4.2)

4.1 Plus Polarised

Let’s take the GW pulse Aij(u) to be triangular in shape and plus polarised
in nature. In the above Figure4.1 we have shown our chosen pulse of width a
and slope β. Solving Eq.(4.2) analytically, the expressions of x(u) and y(u)
are as follows

x(u) =


vxinit (u− uinit) + xinit u ≤ −a

2

C1Ai
[
β1/3

(
u+ a

2

)]
+ C2Bi

[
β1/3

(
u+ a

2

)]
−a

2
< u ≤ 0

C3Ai
[
(−β)1/3

(
u− a

2

)]
+ C4Bi

[
(−β)1/3

(
u− a

2

)]
0 < u ≤ a

2

vxfinal
(
u− a

2

)
+ xfinal u > a

2

(4.3)

y(u) =


vyinit (u− uinit) + yinit u ≤ −a

2

D1Ai
[
(−β)1/3

(
u+ a

2

)]
+D2Bi

[
(−β)1/3

(
u+ a

2

)]
−a

2
< u ≤ 0

D3Ai
[
β1/3

(
u− a

2

)]
+D4Bi

[
β1/3

(
u− a

2

)]
0 < u ≤ a

2

vyfinal
(
u− a

2

)
+ yfinal u > a

2

(4.4)
where (xinit, yinit) and (vxinit, v

y
init) are initial position and velocity of the test

mass at u = uinit. The expressions of the arbitrary constants Ci’s and Di’s
can be found in Appendix: B [7].
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Now, let’s consider 2 test masses with initial separation (∆xinit,∆yinit)
and relative velocity (∆vxinit,∆vyinit). Then, the evolution of displacement
memory (δx(u), δy(u)) is given by

δx(u) =


∆vxinit (u− uinit) + ∆xinit u ≤ −a

2

C̃1Ai
[
β1/3

(
u+ a

2

)]
+ C̃2Bi

[
β1/3

(
u+ a

2

)]
−a

2
< u ≤ 0

C̃3Ai
[
(−β)1/3

(
u− a

2

)]
+ C̃4Bi

[
(−β)1/3

(
u− a

2

)]
0 < u ≤ a

2

∆vxfinal
(
u− a

2

)
+∆xfinal u > a

2

(4.5)

δy(u) =


∆vyinit (u− uinit) + ∆yinit u ≤ −a

2

D̃1Ai
[
(−β)1/3

(
u+ a

2

)]
+ D̃2Bi

[
(−β)1/3

(
u+ a

2

)]
−a

2
< u ≤ 0

D̃3Ai
[
β1/3

(
u− a

2

)]
+ D̃4Bi

[
β1/3

(
u− a

2

)]
0 < u ≤ a

2

∆vyfinal
(
u− a

2

)
+∆yfinal u > a

2

(4.6)
where C̃i’s and D̃i’s are given by

C̃1 =
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
∆vxinit +∆xinit

)
−

3
√
3Γ
(
1
3

)
∆vxinit

2 3
√
β

C̃2 =
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
∆vxinit +∆xinit

)
+

Γ
(
1
3

)
∆vxinit

2 6
√
3 3
√
β

C̃3 =

(
Bi[a

2
β1/3]Bi′[−a

2
(−β)1/3]− (−1)1/3Bi[−a

2
(−β)1/3]Bi′[a

2
β1/3]

Ai[−a
2
(−β)1/3]Bi′[−a

2
(−β)1/3]−Bi[−a

2
(−β)1/3]Ai′[−a

2
(−β)1/3]

)
(
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
∆vxinit +∆xinit

)
+

Γ
(
1
3

)
∆vxinit

2 6
√
3 3
√
β

)

+

(
Ai[a

2
β1/3]Bi′[−a

2
(−β)1/3]− (−1)1/3Ai′[a

2
β1/3]Bi[−a

2
(−β)1/3]

Ai[−a
2
(−β)1/3]Bi′[−a

2
(−β)1/3]−Bi[−a

2
(−β)1/3]Ai′[−a

2
(−β)1/3]

)
(
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
∆vxinit +∆xinit

)
−

3
√
3Γ
(
1
3

)
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2 3
√
β

)
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C̃4 =

(
−Bi[a

2
β1/3]Ai′[−a

2
(−β)1/3] + (−1)1/3Ai[−a

2
(−β)1/3]Bi′[a

2
β1/3]
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2
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2
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√
3 3
√
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2
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2
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2
(−β)1/3]
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2
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2
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2
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2
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)((
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)
−

3
√
3Γ
(
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)
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√
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2
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)
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3
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3 3
√
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2
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2
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2
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2
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− uinit
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+
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2
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β1/3]−Bi[−a

2
β1/3]Ai′[−a

2
β1/3]

)
(
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
∆vy init +∆yinit

)
−

3
√
3Γ
(
1
3

)
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D̃4 =

(
−Bi[a

2
(−β)1/3]Ai′[−a

2
β1/3] + (−1)1/3Ai[−a

2
β1/3]Bi′[a

2
(−β)1/3]

Ai[−a
2
β1/3]Bi′[−a

2
β1/3]−Bi[−a

2
β1/3]Ai′[−a

2
β1/3]

)
(
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
∆vy init +∆yinit

)
+

Γ
(
1
3

)
∆vy init

2 6
√
3 3
√
−β

)

+

(
−Ai[a

2
(−β)1/3]Ai′[−a

2
β1/3] + (−1)1/3Ai′[a

2
(−β)1/3]Ai[−a

2
β1/3]

Ai[−a
2
β1/3]Bi′[−a

2
β1/3]−Bi[−a

2
β1/3]Ai′[−a
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(
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2
32/3Γ

(
2

3

)((
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− uinit
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∆vy init +∆yinit

)
−

3
√
3Γ
(
1
3

)
∆vy init

2 3
√
−β

)
and

∆xfinal = C̃3Ai(0) + C̃4Bi(0)

∆vxfinal = (−β)1/3
(
C̃3Ai

′(0) + C̃4Bi′(0)
)

∆yfinal = D̃3Ai(0) + D̃4Bi(0)

∆vyfinal = β1/3
(
D̃3Ai

′(0) + D̃4Bi′(0)
)

In the Eq.(4.5) and Eq.(4.6) the displacement memory does not depend on
the position or velocity of each test masses. Instead, it is a function of their
relative differences which is consistent with the homogeneity of space.

Figure 4.2: Displacement Memory of the test masses along x axis
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Figure 4.3: Displacement Memory of the test masses along y axis

Displacement memory of two test masses separated by 9 unit along both
axis initially with zero initial relative velocity and non-zero initial relative
velocity (∆vinit = 0.1) have been shown in the above two plots where we have
taken a = 1, β = 1 and uinit = −50.

Now, let’s look at the displacement memory graphs for different values of
a and β with initial separation of 9 units and zero initial relative velocity at
initial time uinit = −50.
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Figure 4.4: Displacement Memory for different values of parameter a and β

The effect of GW on the shape of a ring of particles is an old idea to detect
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GW. Here, we will see the effect of this plus polarised metric containing
triangular pulse at different times on a set of particles placed circularly with
no initial velocity at uinit = −50. Displacement memory of these ring of
particles w.r.t origin have been shown in Figure4.5 for a triangular pulse of
a = 1 and β = 1.
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Figure 4.5: Variation of the shape of a ring of particles in presence of a plus
polarised triangular pulse
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4.2 Cross Polarised

Now, we will take triangular GW pulse in cross polarised metric Aij(u).
Solving Eq.(4.2) analytically, the expressions of x(u) and y(u) are as follows

x(u) =



vxinit (u− uinit) + xinit u ≤ −a
2

1
2
(E1Ai[β
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2
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2
)]) −a

2
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2
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2
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2
)]) 0 < u ≤ a

2

vxfinal
(
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2

)
+ xfinal u > a

2

(4.7)

y(u) =


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2

1
2
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2
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2
)]
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2
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2
)]) −a

2
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1
2
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2
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2
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2
)]− E8Bi[β1/3(u− a

2
)]) 0 < u ≤ a

2

vyfinal
(
u− a

2

)
+ yfinal u > a

2

(4.8)
where (xinit, yinit) and (vxinit, v

y
init) are initial position and velocity of the test

mass at u = uinit. The expressions of the arbitrary constants Ei’s can be
found in Appendix: B [7].

Now, let’s consider 2 test masses with initial separation (∆xinit,∆yinit)
and relative velocity (∆vxinit,∆vyinit). Then, the evolution of displacement
memory (δx(u), δy(u)) is given by

δx(u) =


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2
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2
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2

(4.9)
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δy(u) =


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2
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2

(4.10)
where Ẽi’s can be found by taking the differences between the Ei for the two
test masses. Ei’s are functions of xinit, yinit, v

x
init, v

y
init and if we replace these

by ∆xinit,∆yinit,∆vxinit,∆vyinit we get Ẽi from Ei.

Here, we have shown the displacement memory of two test masses sep-
arated by 9 unit along both axis initially with zero initial relative velocity
and non-zero initial relative velocity (∆vinit = 0.1) in the following two plots
where we have taken a = 1, β = 1 and uinit = −50.

Non zero relative velocity: Δvx init=0.1

Zero relative velocity: Δvx init=0
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Figure 4.6: Displacement Memory of the test masses along x axis
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Zero relative velocity: Δvx init=Δv
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Figure 4.7: Displacement Memory of the test masses along y axis
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Figure 4.8: Variation of the shape of a ring of particles in presence of a cross
polarised triangular pulse
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Chapter 5

Conclusions

In this report I have tried to give an overview of the GW memory and per-
sistent memory observable which will set the foundation for my next work.
The behaviour of some of the persistent observables in presence of some par-
ticular GW have been discussed to a great extent. We have discussed about
the analytical form of the displacement memory in presence of a triangu-
lar and square pulse and then using this expressions we have analysed the
change in the shape of a ring of particles for triangular pulse. Then we have
calculated the Jacobi propagators for a square pulse in exact radiative space-
time and compared this result with the analytical solution. Such examples
may intrigue readers to think about some experimental setup to detect GW
memory. One might think of a setup where two initially separated masses
comes closer and collide. Or, some setup where two misaligned masses (ex-
laser-LDR pair) become aligned because of GW memory. But one cannot
predict about the GW pulse profile so, more than two test masses instead of
two in the setup might help in detecting memory.
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Chapter 6

Appendix A

6.1 Different types of memory effects and per-

sistent observables: a brief summary

Based on different physical scenarios one can define different types of memory
observables for different physical quantities. Out of many such observables
displacement memory, persistent relative velocity memory, persistent rela-
tive proper time and persistent Lorentz transformation observable are some
important memory observables [2]. If two test masses follow geodesics γ and
γ̄ and have a initial and final separation vector ζa and ζa

′
at proper times τ0

and τ1 respectively of an observer on γ, then the following quantities can be
expressed in terms of Riemann tensor as

Displacement Memory:

∆ζα = −
∫ τ1

τ0

dτ2

∫ τ2

τ0

dτ3R
α
βγδ(τ3)γ̇

βζγ γ̇δ

This is nothing but of change in geodesic separation in presence of a gravi-
tational wave.

Persistent Relative Velocity Observable:

∆ζ̇α = −
∫ τ1

τ0

dτ2R
α
βγδ(τ2)γ̇

βζγ γ̇δ

This gives change in relative velocity of two test masses along these geodesics.
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Persistent Relative Proper Time Observable: If we measure the ini-
tial separation ζα at proper time τ0 of two observers’ clock on γ and γ̄, the
time at the clocks will not be the same while measuring the final separation.
Then the difference in proper time will be

∆τ =
1

2

∫ τ1

τ0

dτ2Rαβγδ(τ2)ζ
αγ̇βζγ γ̇δ

Persistent Lorentz Transformation Observable: On the geodesics tetrads
can be parallel transported along the worldlines and these tetrads are related
to each other by Lorentz transformation matrix which shows variation when
GW passes by. The transformation matrix can be written as

Λµ
ν = δµν +∆Ωµ

ν

where

∆Ωµ
ν =

∫ τ1

τ0

dτ2R
µ
ναβ(τ2)ζ

αγ̇β

Although we have mentioned about persistent relative proper time and Lorentz
transformation observable, we have not used these in this report. We will
include these two observable in our future work.

6.2 Geodesics in terms of Jacobi Propagators

The solutions of Eq. (3.7) can be expressed in terms of transverse Jacobi
propagators Ki

j(u
′, u) and H i

j(u
′, u)

xi(τ ′) = Ki
j(u

′, u)xj(τ) + (τ ′ − τ)H i
j(u

′, u)ẋj(τ) (6.1)

which are two point functions of u and u′ and satisfy the following differential
equations

∂2
u′Ki

j(u
′, u) = Ai

k(u
′)Kk

j (u
′, u) (6.2)

∂2
u′ [(u′ − u)H i

j(u
′, u)] = (u′ − u)Ai

k(u
′)Hk

j (u
′, u) (6.3)

with boundary conditions

Ki
j(u, u) = H i

j(u, u) = δij (6.4)

∂u′Ki
j(u

′, u)|u′=u = ∂u′H i
j(u

′, u)|u′=u = 0 (6.5)
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These tranverse Jacobi propagators can be written as

Ki
j(u

′, u) =
∞∑
n=0

(n)Ki
j(u

′, u) (6.6)

H i
j(u

′, u) =
∞∑
n=0

(n)H i
j(u

′, u) (6.7)

The zeroth order terms are obtained from the boundary conditions given in
Eq. (6.4)

(0)Ki
j(u

′, u) =(0) H i
j(u

′, u) = δij (6.8)

At first order, the propagators are calculated using

(1)Ki
j(u

′, u) =

∫ u′

u

du′′
∫ u′′

u

du′′′Ai
j(u

′′′) (6.9)

(1)H i
j(u

′, u) =

∫ u′

u

du′′
∫ u′′

u

du′′′u
′′′ − u

u′ − u
Ai

j(u
′′′) (6.10)

In the next section we will calculate Jacobi propagators of square GW
pulse upto first order and will compare the memory observable obtained from
Eq. (6.1) with it’s analytical solution.

6.3 Jacobi Propagators for Square Pulse in

Plus polarised metric

Now, let’s take a square pulse of width a and height H shown in Figure6.2 to
study the memory effect in the spacetime. This pulse is sandwiched between
u = −a

2
and u = a

2
and it increases to H from zero and at u = −a

2
and again

drops to zero at u = a
2
. Due to piecewise functional definition of the square

we divide the whole region into 3 parts. Region 1 belong to u ≤ −a
2
, Region

2 consists of u ∈ (−a
2
, a
2
] and Region 3 belong to u > a

2
.

A(u) =


0 u ≤ −a

2
(Region 1)

H −a
2
< u ≤ a

2
(Region 2)

0 u > a
2

(Region 4)

(6.11)
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Figure 6.1: Square Pulse

To calculate Jacobi propagators using Eq.(6.9) and Eq.(6.10) it will be easier
if we represent the pulse in terms of step function U(u).

A(u) = H
[
U(u+

a

2
)− U(u− a

2
)
]

(6.12)

Before we delve into the calculation of Jacobi propagators, we will calcu-
late some integrals of step function which will come handy in our further
calculations.∫ u′′

u

U(u′′′ − a)du′′′ = (u′′ − a)U(u′′ − a)− (u− a)U(u− a)

∫ u′

u

(u′′ − a)U(u′′ − a)du′′ =

[
1

2
(u′′ − a)2U(u′′ − a)

]u′

u

−
∫ u′

u

δ(u′′ − a)
1

2
(u′′ − a)2du′′

=
1

2

[
(u′ − a)2U(u′ − a)− (u− a)2U(u− a)

]
∫ u′

u

(u′′ − a)2U(u′′ − a)du′′ =

[
1

3
(u′′ − a)3U(u′′ − a)

]u′

u

−
∫ u′

u

δ(u′′ − a)
1

3
(u′′ − a)3du′′

=
1

3

[
(u′ − a)3U(u′ − a)− (u− a)3U(u− a)

]
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∫ u′

u

du′′
∫ u′′

u

du′′′u
′′′ − u

u′ − u
U(u′′′ − a) =

∫ u′

u

du′′
∫ u′′

u

du′′′
[
u′′′ − a

u′ − u
U(u′′′ − a)− u− a

u′ − u
U(u′′′ − a)

]
=

∫ u′

u

du′′ 1

u′ − u
[
1

2
(u′′ − a)2U(u′′ − a)− 1

2
(u− a)2U(u− a)

−(u− a)(u′′ − a)U(u′′ − a) + (u− a)2U(u− a)]

=

∫ u′

u

du′′ 1

u′ − u
[
1

2
(u′′ − a)2U(u′′ − a)

−(u− a)(u′′ − a)U(u′′ − a) +
1

2
(u− a)2U(u− a)]

=
1

6

1

(u′ − u)
[(u′ − a)3U(u′ − a)− (u− a)3U(u− a)]

−1

2

u− a

u′ − u
[(u′ − a)2U(u′ − a)− (u− a)2U(u− a)]

+
1

2
(u− a)2U(u− a)

=
1

6

1

(u′ − u)
(u′ − a)3U(u′ − a)− 1

2

u− a

u′ − u
(u′ − a)2U(u′ − a)

+
1

3

1

(u′ − u)
(u− a)3U(u− a) +

1

2
(u− a)2U(u− a)

Now, we will proceed to calculate the first order Jacobi propagators for the
square pulse of height H in plus polarised metric

A11(u) = A(u)

A22(u) = −A(u)

(1)K1
1(u

′, u) =

∫ u′

u

du′′
∫ u′′

u

du′′′A1
1(u

′′′)

= H

∫ u′

u

du′′
∫ u′′

u

du′′′
[
U(u′′′ +

a

2
)− U(u′′′ − a

2
)
]

= H

∫ u′

u

du′′[(u′′ +
a

2
)U(u′′ +

a

2
)− (u+

a

2
)U(u+

a

2
)

−(u′′ − a

2
)U(u′′ − a

2
) + (u− a

2
)U(u− a

2
)]
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= H(
1

2

[
(u′ +

a

2
)2U(u′ +

a

2
)− (u+

a

2
)2U(u+

a

2
)
]

−1

2

[
(u′ − a

2
)2U(u′ − a

2
)− (u− a

2
)2U(u− a

2
)
]

−(u′ − u)
[
(u+

a

2
)U(u+

a

2
)− (u− a

2
)U(u− a

2
)
]
)

(1)K2
2(u

′, u) = −(1)K1
1(u

′, u)

(1)H1
1 (u

′, u) =

∫ u′

u

du′′
∫ u′′

u

du′′′u
′′′ − u

u′ − u
A1

1(u
′′′)

= H

∫ u′

u

du′′
∫ u′′

u

du′′′u
′′′ − u

u′ − u

[
U(u′′′ +

a

2
)− U(u′′′ − a

2
)
]

= H[
1

6

1

(u′ − u)
(u′ +

a

2
)3U(u′ +

a

2
)− 1

2

u+ a
2

u′ − u
(u′ +

a

2
)2U(u′ +

a

2
)

+
1

3

1

(u′ − u)
(u+

a

2
)3U(u+

a

2
) +

1

2
(u+

a

2
)2U(u+

a

2
)

−1

6

1

(u′ − u)
(u′ − a

2
)3U(u′ − a

2
) +

1

2

u− a
2

u′ − u
(u′ − a

2
)2U(u′ − a

2
)

−1

3

1

(u′ − u)
(u− a

2
)3U(u− a

2
)− 1

2
(u− a

2
)2U(u− a

2
)]

(1)H2
2 (u

′, u) = −(1)H1
1 (u

′, u)

Assuming u = τ the Eq.(6.1) takes the form

xi(u) = Ki
j(u, uinit)x

j(uinit) + (u− uinit)H
i
j(u, uinit)ẋ

j(uinit) (6.13)

Here we consider uinit << −a
2
belong to Region 1. Now, we will find the

expressions of x(u) and y(u) for the three regions of Figure6.2 using the pre-
viously calculated Jacobi propagators in Eq.(6.13).
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In the Region 1 (u ≤ −a
2
),

x(u) = K1
1(u, uinit)x(uinit) + (u− uinit)H

1
1 (u, uinit)ẋ(uinit)

= [1 + 0]xinit + (u− uinit)[1 + 0]vxinit
= vxinit(u− uinit) + xinit

y(u) = K2
2(u, uinit)y(uinit) + (u− uinit)H

2
2 (u, uinit)ẏ(uinit)

= [1 + 0]yinit + (u− uinit)[1 + 0]vyinit
= vyinit(u− uinit) + yinit

In the Region 2 (−a
2
< u ≤ a

2
),

x(u) = K1
1(u, uinit)x(uinit) + (u− uinit)H

1
1 (u, uinit)ẋ(uinit)

=

[
1 +

H

2
(u+

a

2
)2
]
xinit

+(u− uinit)

[
1 +

H

6(u− uinit)
(u+

a

2
)3 −

H(uinit +
a
2
)

2(u− uinit)
(u+

a

2
)2
]
vxinit

= [vxinit(u− uinit) + xinit] +
H

2
(u+

a

2
)2xinit + vxinit

[
H

6
(u+

a

2
)3 − H

2
(uinit +

a

2
)(u+

a

2
)2
]

y(u) = K2
2(u, uinit)y(uinit) + (u− uinit)H

2
2 (u, uinit)ẏ(uinit)

=

[
1− H

2
(u+

a

2
)2
]
yinit

+(u− uinit)

[
1− H

6(u− uinit)
(u+

a

2
)3 +

H(uinit +
a
2
)

2(u− uinit)
(u+

a

2
)2
]
vyinit

= [vyinit(u− uinit) + yinit]−
H

2
(u+

a

2
)2yinit − vyinit

[
H

6
(u+

a

2
)3 − H

2
(uinit +

a

2
)(u+

a

2
)2
]

In the Region 3 (u > a
2
)

x(u) = K1
1(u, uinit)x(uinit) + (u− uinit)H

1
1 (u, uinit)ẋ(uinit)

=

[
1 +

H

2
(u+

a

2
)2 − H

2
(u− a

2
)2
]
xinit + (u− uinit)[1 +

H

6(u− uinit)
[(u+

a

2
)3 − (u− a

2
)3]

−
H(uinit +

a
2
)

2(u− uinit)
(u+

a

2
)2 +

H(uinit − a
2
)

2(u− uinit)
(u− a

2
)2]vxinit
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= [vxinit(u− uinit) + xinit] +Huaxinit + vxinit[
H

6
((u+

a

2
)3 − (u− a

2
)3)

−H

2
(uinit +

a

2
)(u+

a

2
)2 +

H

2
(uinit −

a

2
)(u− a

2
)2]

y(u) = K2
2(u, uinit)y(uinit) + (u− uinit)H

2
2 (u, uinit)ẏ(uinit)

=

[
1− H

2
(u+

a

2
)2 +

H

2
(u− a

2
)2
]
yinit + (u− uinit)[1−

H

6(u− uinit)
[(u+

a

2
)3 − (u− a

2
)3]

+
H(uinit +

a
2
)

2(u− uinit)
(u+

a

2
)2 −

H(uinit − a
2
)

2(u− uinit)
(u− a

2
)2]vyinit

= [vyinit(u− uinit) + yinit]−Huayinit − vyinit[
H

6
((u+

a

2
)3 − (u− a

2
)3)

−H

2
(uinit +

a

2
)(u+

a

2
)2 +

H

2
(uinit −

a

2
)(u− a

2
)2]

Now, in the following figure we have shown the comparison of the displace-
ment memory (along x axis) obtained analytically and using Jacobi propa-
gators

Analytical Solution

Jacobi Propagators

-40 -20 20 40
u

100

200

300

400

500

x

Figure 6.2: Comparison between analytical solution and solution in terms of
Jacobi propagators
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Chapter 7

Appendix: B

Here we will show complete derivation of analytical solution of Geodesic Eq.
(4.2)

7.1 Plus Polarised Triangular Pulse

For the Region 1 in Figure4.1,

d2x

du2
= 0

x(u) = vxinit(u− uinit) + xinit

ẋ(u) = vxinit

Similarly, for y component it follows

d2y

u
= 0

y(u) = vyinit(u− uinit) + yinit

ẏ(u) = vyinit

where (xinit, yinit) and (vxinit, v
y
init) are initial position and velocity of the test

mass at u = uinit.

In the Region 2,
d2x

du2
= β

(
u+

a

2

)
x(u)
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Substituting z = β1/3
(
u+ a

2

)
we get,

d2x

dz2
= zx

x(u) = C1Ai(z) + C2Bi(z)

x(u) = C1Ai
[
β1/3

(
u+

a

2

)]
+ C2Bi

[
β1/3

(
u+

a

2

)]
ẋ(u) = β1/3

(
C1Ai

′
[
β1/3

(
u+

a

2

)]
+ C2Bi′

[
β1/3

(
u+

a

2

)])
where arbitrary constants C1 and C2 are obtained by equating the expression
of x(u) and ẋ(u) for Region 1 and 2 at their junction u = −a

2[
Ai(0) Bi(0)

β1/3Ai′(0) β1/3Bi′(0)

] [
C1

C2

]
=

[
vxinit(−a

2
− uinit) + xinit

vxinit

]
[
C1

C2

]
=

1
2
32/3Γ

(
2
3

) ((
−a

2
− uinit

)
vxinit + xinit

)
−

3√3Γ( 1
3)vxinit

2 3√β

1
2

6
√
3Γ
(
2
3

) ((
−a

2
− uinit

)
vxinit + xinit

)
+

Γ( 1
3)vxinit

2 6√3 3√β


And for y coordinate,

d2y

du2
= −β

(
u+

a

2

)
y(u)

Substituting z = (−β)1/3
(
u+ a

2

)
we get,

d2y

dz2
= zy

y(u) = D1Ai(z) +D2Bi(z)

y(u) = D1Ai
[
(−β)1/3

(
u+

a

2

)]
+D2Bi

[
(−β)1/3

(
u+

a

2

)]
ẏ(u) = (−β)1/3

(
D1Ai

′
[
(−β)1/3

(
u+

a

2

)]
+D2Bi′

[
(−β)1/3

(
u+

a

2

)])
where arbitrary constants D1 and D2 are obtained in similar way by equating
expressions of y(τ ′) and ẏ(τ ′) for Region 1 and 2 at u′ = −a

2[
Ai(0) Bi(0)

(−β)1/3Ai′(0) (−β)1/3Bi′(0)

] [
D1

D2

]
=

[
vyinit(−a

2
− uinit) + yinit
vyinit

]
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[
D1

D2

]
=

1
2
32/3Γ

(
2
3

) ((
−a

2
− uinit

)
vy init + yinit

)
−

3√3Γ( 1
3)vy init

2 3√−β

1
2

6
√
3Γ
(
2
3

) ((
−a

2
− uinit

)
vy init + yinit

)
+

Γ( 1
3)vy init

2 6√3 3√−β


In the Region 3,

d2x

du2
= −β

(
u− a

2

)
x(u) (7.1)

Substituting z = (−β)1/3
(
u− a

2

)
we get,

d2x

dz2
= zx

x(u) = C3Ai(z) + C4Bi(z)

x(u) = C3Ai
[
(−β)1/3

(
u− a

2

)]
+ C4Bi

[
(−β)1/3

(
u− a

2

)]
ẋ(u) = (−β)1/3

(
C3Ai

′
[
(−β)1/3

(
u− a

2

)]
+ C4Bi′

[
(−β)1/3

(
u− a

2

)])
where arbitrary constants C3 and C4 can be calculated by equating the ex-
pression of x(u) and ẋ(u) for Region 2 and 3 at their junction u = 0[

Ai[−(−β)1/3 a
2
] Bi[−(−β)1/3 a

2
]

(−β)1/3Ai′[−(−β)1/3 a
2
] (−β)1/3Bi′[−(−β)1/3 a

2
]

] [
C3

C4

]

=

[
Ai[β1/3 a

2
] Bi[β1/3 a

2
]

β1/3Ai′[β1/3 a
2
] β1/3Bi′[β1/3 a

2
]

] [
C1

C2

]

C3 =

(
Bi[a

2
β1/3]Bi′[−a

2
(−β)1/3]− (−1)1/3Bi[−a

2
(−β)1/3]Bi′[a

2
β1/3]

Ai[−a
2
(−β)1/3]Bi′[−a

2
(−β)1/3]−Bi[−a

2
(−β)1/3]Ai′[−a

2
(−β)1/3]

)
(
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
vxinit + xinit

)
+

Γ
(
1
3

)
vxinit

2 6
√
3 3
√
β

)

+

(
Ai[a

2
β1/3]Bi′[−a

2
(−β)1/3]− (−1)1/3Ai′[a

2
β1/3]Bi[−a

2
(−β)1/3]

Ai[−a
2
(−β)1/3]Bi′[−a

2
(−β)1/3]−Bi[−a

2
(−β)1/3]Ai′[−a

2
(−β)1/3]

)
(
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
vxinit + xinit

)
−

3
√
3Γ
(
1
3

)
vxinit

2 3
√
β

)
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C4 =

(
−Bi[a

2
β1/3]Ai′[−a

2
(−β)1/3] + (−1)1/3Ai[−a

2
(−β)1/3]Bi′[a

2
β1/3]

Ai[−a
2
(−β)1/3]Bi′[−a

2
(−β)1/3]−Bi[−a

2
(−β)1/3]Ai′[−a

2
(−β)1/3]

)
(
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
vxinit + xinit

)
+

Γ
(
1
3

)
vxinit

2 6
√
3 3
√
β

)

+

(
−Ai[a

2
β1/3]Ai′[−a

2
(−β)1/3] + (−1)1/3Ai′[a

2
β1/3]Ai[−a

2
(−β)1/3]

Ai[−a
2
(−β)1/3]Bi′[−a

2
(−β)1/3]−Bi[−a

2
(−β)1/3]Ai′[−a

2
(−β)1/3]

)
(
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
vxinit + xinit

)
−

3
√
3Γ
(
1
3

)
vxinit

2 3
√
β

)

Similarly, for y coordinate we get

d2y

dz2
= β

(
u− a

2

)
y(u)

Substituting z = β1/3
(
u− a

2

)
we get,

d2y

dz2
= zy

y(u) = D3Ai(z) +D4Bi(z)

y(u) = D3Ai
[
β1/3

(
u− a

2

)]
+D4Bi

[
β1/3

(
u− a

2

)]
ẏ(u) = β1/3

(
C3Ai

′
[
β1/3

(
u− a

2

)]
+ C4Bi′

[
β1/3

(
u− a

2

)])
where arbitrary constants D3 and D4 can be calculated using the expression
of y(τ ′) and ẏ(τ ′) for Region 2 and 3 at their junction u′ = 0[

Ai[−β1/3 a
2
] Bi[−β1/3 a

2
]

β1/3Ai′[−β1/3 a
2
] β1/3Bi′[−β1/3 a

2
]

] [
D3

D4

]

=

[
Ai[(−β)1/3 a

2
] Bi[(−β)1/3 a

2
]

(−β)1/3Ai′[(−β)1/3 a
2
] (−β)1/3Bi′[(−β)1/3 a

2
]

] [
D1

D2

]
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D3 =

(
Bi[a

2
(−β)1/3]Bi′[−a

2
β1/3]− (−1)1/3Bi[−a

2
β1/3]Bi′[a

2
(−β)1/3]

Ai[−a
2
β1/3]Bi′[−a

2
β1/3]−Bi[−a

2
β1/3]Ai′[−a

2
β1/3]

)
(
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
vy init + yinit

)
+

Γ
(
1
3

)
vy init

2 6
√
3 3
√
−β

)

+

(
Ai[a

2
(−β)1/3]Bi′[−a

2
β1/3]− (−1)1/3Ai′[a

2
(−β)1/3]Bi[−a

2
β1/3]

Ai[−a
2
β1/3]Bi′[−a

2
β1/3]−Bi[−a

2
β1/3]Ai′[−a

2
β1/3]

)
(
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
vy init + yinit

)
−

3
√
3Γ
(
1
3

)
vy init

2 3
√
−β

)

D4 =

(
−Bi[a

2
(−β)1/3]Ai′[−a

2
β1/3] + (−1)1/3Ai[−a

2
β1/3]Bi′[a

2
(−β)1/3]

Ai[−a
2
β1/3]Bi′[−a

2
β1/3]−Bi[−a

2
β1/3]Ai′[−a

2
β1/3]

)
(
1

2
6
√
3Γ

(
2

3

)((
−a

2
− uinit

)
vy init + yinit

)
+

Γ
(
1
3

)
vy init

2 6
√
3 3
√
−β

)

+

(
−Ai[a

2
(−β)1/3]Ai′[−a

2
β1/3] + (−1)1/3Ai′[a

2
(−β)1/3]Ai[−a

2
β1/3]

Ai[−a
2
β1/3]Bi′[−a

2
β1/3]−Bi[−a

2
β1/3]Ai′[−a

2
β1/3]

)
(
1

2
32/3Γ

(
2

3

)((
−a

2
− uinit

)
vy init + yinit

)
−

3
√
3Γ
(
1
3

)
vy init

2 3
√
−β

)

In the Region 4,

d2x

du2
= 0

x(u) = vxfinal

(
u− a

2

)
+ xfinal

ẋ(u) = vxfinal

and

d2y

du2
= 0

y(u) = vyfinal

(
u− a

2

)
+ yfinal

ẏ(u) = vyfinal
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where (xfinal, yfinal) and (vxfinal, v
y
final) are final position and velocity of the

test mass respectively at u = a
2
.

Because of continuity relation of position and velocity vector between
Region 3 and 4, at u′ = a

2
we get

xfinal = C3Ai(0) + C4Bi(0)

vxfinal = (−β)1/3 (C3Ai
′(0) + C4Bi′(0))

yfinal = D3Ai(0) +D4Bi(0)

vyfinal = β1/3 (D3Ai
′(0) +D4Bi′(0))

7.2 Cross Polarised Triangular Pulse

In the Region 1 of Figure4.1,

d2x

du2
= 0

x(u) = vxinit(u− uinit) + xinit

ẋ(u) = vxinit

Similarly, for y component it follows

d2y

u
= 0

y(u) = vyinit(u− uinit) + yinit

ẏ(u) = vyinit

where (xinit, yinit) and (vxinit, v
y
init) are initial position and velocity of the test

mass at u = uinit.

In the Region 2,
d2x

du2
= β

(
u+

a

2

)
y(u) (7.2)

and
d2y

du2
= β

(
u+

a

2

)
x(u) (7.3)

51



We can not solve these coupled differential equations individually. To solve
Eq.(7.2) and Eq.(7.3) we need to add and subtract these equations

d2

du2
(x+ y) = β

(
u+

a

2

)
(x+ y) (7.4)

d2

du2
(x− y) = −β

(
u+

a

2

)
(x− y) (7.5)

From the solution of Eq.(7.1) and Eq.(7.1) in section 7.1 of Appendix: B7
we can write the solutions of the above equations Eq.(7.4) and Eq.(7.5) as

x+ y = E1Ai[β
1/3(u+

a

2
)] + E2Bi[β1/3(u+

a

2
)] (7.6)

x− y = E3Ai[(−β)1/3(u+
a

2
)] + E4Bi[(−β)1/3(u+

a

2
)] (7.7)

Now adding and subtracting these two equations Eq.(7.6) and Eq.(7.7) we
get the expressions of x(u) and y(u) for Region 2

x(u) =
1

2
(E1Ai[β

1/3(u+
a

2
)] + E2Bi[β1/3(u+

a

2
)]

+E3Ai[(−β)1/3(u+
a

2
)] + E4Bi[(−β)1/3(u+

a

2
)])

y(u) =
1

2
(E1Ai[β

1/3(u+
a

2
)] + E2Bi[β1/3(u+

a

2
)]

−E3Ai[(−β)1/3(u+
a

2
)]− E4Bi[(−β)1/3(u+

a

2
)])

and

ẋ(u) =
1

2
(β1/3E1Ai[β

1/3(u+
a

2
)] + β1/3E2Bi[β1/3(u+

a

2
)]

+(−β)1/3E3Ai[(−β)1/3(u+
a

2
)] + (−β)1/3E4Bi[(−β)1/3(u+

a

2
)])

ẏ(u) =
1

2
(β1/3E1Ai[β

1/3(u+
a

2
)] + β1/3E2Bi[β1/3(u+

a

2
)]

−(−β)1/3E3Ai[(−β)1/3(u+
a

2
)]− (−β)1/3E4Bi[(−β)1/3(u+

a

2
)])

where arbitrary constantsEi’s are obtained by equating expressions of x(u), y(u), ẋ(u)
and ẏ(u) for Region 1 and 2 at u = −a

2

1

2


Ai(0) Bi(0) Ai(0) Bi(0)
Ai(0) Bi(0) −Ai(0) −Bi(0)

β1/3Ai′(0) β1/3Bi′(0) (−β)1/3Ai′(0) (−β)1/3Bi′(0)
β1/3Ai′(0) β1/3Bi′(0) −(−β)1/3Ai′(0) −(−β)1/3Bi′(0)



E1

E2

E3

E4

 =


vxinit(−a

2
− uinit) + yinit

vyinit(−a
2
− uinit) + yinit
vxinit
vyinit


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
E1

E2

E3

E4

 =


1
2
32/3Γ

(
2
3

) ((
−a

2
− uinit

)
(vxinit + vy init) + xinit + yinit

)
−

3√3Γ( 1
3)(vxinit+vy init)

2 3√β

1
2

6
√
3Γ
(
2
3

) ((
−a

2
− uinit

)
(vxinit + vy init) + xinit + yinit

)
+

Γ( 1
3)(vxinit+vy init)

2 6√3 3√β

1
2
32/3Γ

(
2
3

) ((
−a

2
− uinit

)
(vxinit − vy init) + xinit − yinit

)
−

3√3Γ( 1
3)(vxinit−vy init)

2 3√−β

1
2

6
√
3Γ
(
2
3

) ((
−a

2
− uinit

)
(vxinit − vy init) + xinit − yinit

)
+

Γ( 1
3)(vxinit−vy init)

2 6√3 3√−β


In the Region 3,

d2x

du2
= −β

(
u− a

2

)
y(u) (7.8)

and
d2y

du2
= −β

(
u− a

2

)
x(u) (7.9)

Adding and subtracting Eq.(7.8) and Eq.(7.9) we get

d2

du2
(x+ y) = −β

(
u− a

2

)
(x+ y) (7.10)

d2

du2
(x− y) = β

(
u− a

2

)
(x− y) (7.11)

From the solution of Eq.(7.1) and Eq.(7.1) in section 7.1 of Appendix: B7
we can write the solutions of the above equations Eq.(7.10) and Eq.(7.11) as

x+ y = E5Ai[(−β)1/3(u− a

2
)] + E6Bi[(−β)1/3(u− a

2
)] (7.12)

x− y = E7Ai[β
1/3(u− a

2
)] + E8Bi[β1/3(u− a

2
)] (7.13)

Now adding and subtracting these two equations Eq.(7.12) and Eq.(7.13) we
get the expressions of x(u) and y(u) for Region 3

x(u) =
1

2
(E5Ai[(−β)1/3(u− a

2
)] + E6Bi[(−β)1/3(u− a

2
)]

+E7Ai[β
1/3(u− a

2
)] + E8Bi[β1/3(u− a

2
)])

y(u) =
1

2
(E5Ai[(−β)1/3(u− a

2
)] + E6Bi[(−β)1/3(u− a

2
)]

−E7Ai[β
1/3(u− a

2
)]− E8Bi[β1/3(u− a

2
)])
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and

ẋ(u) =
1

2
((−β)1/3E5Ai[(−β)1/3(u− a

2
)] + (−β)1/3E6Bi[(−β)1/3(u− a

2
)]

+β1/3E7Ai[β
1/3(u− a

2
)] + β1/3E8Bi[β1/3(u− a

2
)])

ẏ(u) =
1

2
((−β)1/3E5Ai[(−β)1/3(u− a

2
)] + (−β)1/3E6Bi[(−β)1/3(u− a

2
)]

−β1/3E7Ai[β
1/3(u− a

2
)]− β1/3E8Bi[β1/3(u− a

2
)])

where arbitrary constantsEi’s are calculated from the expressions of x(u), y(u), ẋ(u)
and ẏ(u) for Region 2 and 3 at u = 0

Ai[−(−β)1/3 a
2
] Bi[−(−β)1/3 a

2
] Ai[−β1/3 a

2
] Bi[−β1/3 a

2
]

Ai[−(−β)1/3 a
2
] Bi[−(−β)1/3 a

2
] −Ai[−β1/3 a

2
] −Bi[−β1/3 a

2
]

(−β)1/3Ai′[−(−β)1/3 a
2
] (−β)1/3Bi′[−(−β)1/3 a

2
] β1/3Ai′[−β1/3 a

2
] β1/3Bi′[−β1/3 a

2
]

(−β)1/3Ai′[−(−β)1/3 a
2
] (−β)1/3Bi′[−(−β)1/3 a

2
] −β1/3Ai′[−β1/3 a

2
] −β1/3Bi′[−β1/3 a

2
]



E5

E6

E7

E8



=


Ai[β1/3 a

2
] Bi[β1/3 a

2
] Ai[(−β)1/3 a

2
] Bi[(−β)1/3 a

2
]

Ai[β1/3 a
2
] Bi[β1/3 a

2
] −Ai[(−β)1/3 a

2
] −Bi[(−β)1/3 a

2
]

β1/3Ai′[β1/3 a
2
] β1/3Bi′[β1/3 a

2
] (−β)1/3Ai′[(−β)1/3 a

2
] (−β)1/3Bi′[(−β)1/3 a

2
]

β1/3Ai′[β1/3 a
2
] β1/3Bi′[β1/3 a

2
]] −(−β)1/3Ai′[(−β)1/3 a

2
] −(−β)1/3Bi′[(−β)1/3 a

2
]



E1

E2

E3

E4


In the Region 4,

d2x

du2
= 0

x(u) = vxfinal

(
u− a

2

)
+ xfinal

ẋ(u) = vxfinal

and

d2y

du2
= 0

y(u) = vyfinal

(
u− a

2

)
+ yfinal

ẏ(u) = vyfinal

where (xfinal, yfinal) and (vxfinal, v
y
final) are final position and velocity of the

test mass respectively at u = a
2
.
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Because of continuity relation of position and velocity vector between
Region 3 and 4, at u′ = a

2
we get

xfinal =
1

2
(E5Ai(0) + E6Bi(0) + E7Ai(0) + E8Bi(0))

yfinal =
1

2
(E5Ai(0) + E6Bi(0)− E7Ai(0)− E8Bi(0))

vxfinal =
1

2

(
(−β)1/3E5Ai

′(0) + (−β)1/3E6Bi′(0) + β1/3E7Ai
′(0) + β1/3E8Bi′(0)

)
vyfinal =

1

2

(
(−β)1/3E5Ai

′(0) + (−β)1/3E6Bi′(0)− β1/3E7Ai
′(0)− β1/3E8Bi′(0)

)
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